Accès gratuit
Pré-publication électronique
Dans une revue
BMSAP
Section Article / Article
DOI https://doi.org/10.3166/bmsap-2020-0072
Publié en ligne 15 juin 2020
  • Knüsel CJ, Sparacello V (2018) Functional morphology, postcranial, human. In: Trevathan W, Cartmill M, Dufour D, et al (eds) The international encyclopedia of biological anthropology doi:10.1002/9781118584538.ieba0187 [Google Scholar]
  • Bocquet-Appel JP (2011) When the world’s population took off: the springboard of the Neolithic Demographic Transition. Science 333:560–1 [Google Scholar]
  • Bocquet-Appel JP (2011) The agricultural demographic transition during and after the agriculture inventions. Curr Anthropol 52: S497–510 [Google Scholar]
  • Larsen CS (1995) Biological changes in human populations with agriculture. Ann Rev Anthropol 24:185–213 [CrossRef] [Google Scholar]
  • Larsen CS (1997) Bioarchaeology. Cambridge University Press, Cambridge, 461 p [Google Scholar]
  • Pinhasi R, Stock J (eds) (2011) Human bioarchaeology of the transition to agriculture. Wiley-Liss, New York, 488 p [Google Scholar]
  • Carlson K, Marchi D (eds) (2014) Reconstructing mobility: environmental, behavioral, and morphological determinants. Springer, New York, 295 p [Google Scholar]
  • Lahr M, Foley R, Pinhasi R (2000) Expected regional patterns of Mesolithic-Neolithic human population admixture in Europe based on archaeological evidence. In: Renfrew C, Boyle K (eds) Archaeogenetics: DNA and the population prehistory of Europe. McDonald Institute for Archaeological Research, Monographs, Cambridge, pp 81–8 [Google Scholar]
  • Clare K, Rohling EJ, Weninger B, et al (2008) Warfare in Late Neolithic/Early Chalcolithic Pisidia, southwestern Turkey. Climate induced social unrest in the late 7th millennium cal BC. Doc Praehist 25:65–92 [CrossRef] [Google Scholar]
  • Zeder MA (2008) Domestication and early agriculture in the Mediterranean basin: origins, diffusion, and impact. PNAS 105:11597–604 [CrossRef] [Google Scholar]
  • Rowley-Conwy P (2011) Westward Ho! The spread of agriculture from Central Europe to the Atlantic. Curr Anthropol S52:431–51 [Google Scholar]
  • Shennan S, Downey SS, Timpson A, et al (2013) Regional population collapse followed initial agriculture booms in mid- Holocene Europe. Nat Comm 4:2486 [CrossRef] [Google Scholar]
  • Meyer C, Lohr C, Gronenborn D, et al (2015) The massacre mass grave of Schöneck-Kikianstädten reveals new insights into collective violence in Early Neolithic Central Europe. PNAS 112:11217–22 [CrossRef] [Google Scholar]
  • Stock JT, Pinhasi R (2011) Introduction. Changing paradigms in our understanding of the transition to agriculture: human bioarchaeology, behaviour and adaptation. In: Pinhasi R, Stock J (eds) Human bioarchaeology of the Transition to Agriculture. Wiley- Liss, New York, pp 1–17 [Google Scholar]
  • Binder D (2013) Mésolithique et Néolithique ancien en Méditerranée nord-occidentale entre 7000 et 5500 cal. BCE: questions ouvertes sur les dynamiques culturelles et les procès d’interaction. Actes du XXVIIe Congrès préhistorique de France (Bordeaux– Les Eyzies, 2010). Société préhistorique française, Paris, pp 341–55 [Google Scholar]
  • Binder D, Sénépart I (2010) La séquence de l’Impresso-Cardial de l’abri Pendimoun et l’évolution des assemblages céramiques en Provence. Mémoire LI de la Société Préhistorique française, pp 149–67 [Google Scholar]
  • Binder D, Lanos P, Angeli L, et al (2017) Modelling the earliest north-western dispersal of Mediterranean Impressed Wares: new dates and Bayesian chronological model. Doc Praehist 44:54–77 [CrossRef] [Google Scholar]
  • Maggi R (1997) The radiocarbon chronology. In: Maggi R (ed) Arene Candide: a functional and environmental assessment of the Holocene sequence (excavations Bernabò Brea-Cardini 1940– 1950). Istituto Italiano di paleontologia umana, Il calamo, Roma, ns 5, pp 31–52 [Google Scholar]
  • Pearce M (2013) Radiocarbon chronology for the spread of the early Neolithic north through the Tyrrhenian and Ligurian Seas area. In: Pearce M (ed) Rethinking the North Italian Early Neolithic. Accordia Research Insititute, University of London, London, pp 21–84 [Google Scholar]
  • Del Lucchese A, Starnini E (2015) Aggiornamenti sulla fase antica della Cultura dei Vasi a Bocca Quadrata in Liguria da una revisione dei materiali ceramici in corso. In: Conventi M, Del Lucchese A, Gardini A (eds) Archeologia in Liguria, ns 5 (2012–2013). Sagep Editrice, Genova, pp 27–37 [Google Scholar]
  • Crepaldi F (2001) Le Chasséen en Ligurie. Bull Soc Prehistor Fr 98:485–94 [CrossRef] [Google Scholar]
  • Branch NP, Black S, Maggi R, et al (2014) The neolithisation of Liguria (NW Italy): an environmental archaeological and palaeoenvironmental perspective. Environ Archaeol 19:196–213 [CrossRef] [Google Scholar]
  • Biagi P, Starnini E (2016) La cultura della Ceramica Impressa nella Liguria di Ponente (Italia Settentrionale): distribuzione, cronologia e aspetti culturali. In: Bonet Rosado H (ed) Del neolític a l’edat del bronze en el Mediterrani occidental. Estudis en homenatge a Bernat Martí Oliver. TV SIP 119, València, pp 35–49 [Google Scholar]
  • Biagi P, Starnini E (2018) Gli scavi all’Arma dell’Aquila (Finale Ligure, Savona): le ricerche e I materiali degli scavi del Novecento. Quaderno 15. Società per la Preistoria e Protostoria della Regione Friuli-Venezia Giulia, Trieste, 260 p [Google Scholar]
  • Arobba D, Panelli C, Caramiello R, Gabriele M, Maggi R (2017) Cereal remains, plant impressions and 14C direct dating from the Neolithic pottery of Arene Candide Cave (Finale Ligure, NW Italy). J Archeol Sci Rep 12:395–404 [Google Scholar]
  • Pearson OM, Lieberman DE (2004) The aging of Wolff’s ‘Law’: ontogeny and response to mechanical loading in cortical bone. Am J Phys Anthropol 47:63–99 [Google Scholar]
  • Ruff CB, Holt B, Trinkaus E (2006) Who’s afraid of the big bad Wolff? ‘Wolff’s law’ and bone functional adaptation. Am J Phys Anthropol 129:484–98 [CrossRef] [PubMed] [Google Scholar]
  • Marchi D, Sparacello VS, Holt BM, et al (2006) Biomechanical approach to the reconstruction of activity patterns in Neolithic Western Liguria, Italy. Am J Phys Anthropol 131:447–55 [CrossRef] [PubMed] [Google Scholar]
  • Marchi D (2008) Relationships between lower limb crosssectional geometry and mobility: the case of a Neolithic sample from Italy. Am J Phys Anthropol 137:188–200 [CrossRef] [PubMed] [Google Scholar]
  • Sparacello VS, Marchi D, Shaw CN (2014) The importance of considering fibular robusticity when inferring the mobility patterns of past populations. In: Carlson K, Marchi D (eds) Reconstructing mobility: environmental, behavioral, and morphological determinants. Springer, New York, pp 91–111 [Google Scholar]
  • Sparacello VS, Villotte S, Shaw CN, et al (2018) Changing mobility patterns at the Pleistocene-Holocene transition: the biomechanics of the lower limb of Italian Gravettian and Mesolithic individuals. In: Cristiani E, Borgia V (eds) Palaeolithic Italy: advanced studies on early human adaptations in the Apennine Peninsula. Sidestone Press, Leiden, pp 357–96 [Google Scholar]
  • Sparacello VS, Roberts CA, Canci A, et al (2016) Insights on the paleoepidemiology of ancient tuberculosis from the structural analysis of postcranial remains from the Ligurian Neolithic (northwestern Italy). Int J Paleopath 15:50–64 [CrossRef] [Google Scholar]
  • Sparacello VS, Pearson OM, Coppa A, et al (2011) Changes in robusticity in an Iron Age agropastoral group: the Samnites from the Alfedena necropolis (Abruzzo, Central Italy). Am J Phys Anthropol 144:119–30 [CrossRef] [PubMed] [Google Scholar]
  • Macintosh AA, Pinhasi R, Stock JT (2014) Divergence in male and female manipulative behaviors with the intensification of metallurgy in Central Europe. PLoS ONE 9:e112116 [CrossRef] [PubMed] [Google Scholar]
  • Sládek V, Ruff CB, Berner M, et al (2016) The impact of subsistence changes on humeral bilateral asymmetry in Terminal Pleistocene and Holocene Europe. J Hum Evol 92:37–49 [CrossRef] [PubMed] [Google Scholar]
  • De Pascale A (2008) Le prime esplorazioni nelle caverne ossifere del Finalese: tracce, ipotesi e scoperte ad opera di Issel, Perrando, Morelli, Rovereto, Rossi, Amerano. In: De Pascale A, Del Lucchese A, Raggio O (eds) La nascita della Paletnologia in Liguria: personaggi, scoperte e collezioni tra XIXe XX secolo. Atti del Convegno (Finale Ligure Borgo, 22–23 settembre 2006). Istituto Internazionale di Studi Liguri, Bordighera, pp 223–48 [Google Scholar]
  • Bernabò Brea L (1946) Gli Scavi nella Caverna delle Arene Candide. Parte I Gli Strati con Ceramiche. Collezione di Monografie Preistoriche ed Archeologiche, I. Istituto di Studi Liguri, Bordighera [Google Scholar]
  • Bernabò Brea L (1956) Gli Scavi nella Caverna delle Arene Candide (Finale Ligure). Parte Prima: Gli Strati con Ceramiche: Campagne di Scavo 1948-50. Collezione di Monografie Preistoriche ed Archeologiche, I. Istituto Internazionale di Studi Liguri, Bordighera [Google Scholar]
  • Sparacello VS, Panelli C, Rossi S, et al (2019) The re-discovery of Arma dell’Aquila (Finale Ligure, Italy): new insights on Neolithic funerary behavior from the sixth millennium BCE in the north-western Mediterranean. Quat Int 512:67–81 doi.org/10.1016/j.quaint.2019.02.003 [Google Scholar]
  • Mannino MA, Talamo S, Goude G, et al (2018) Analisi isotopiche e datazioni sul collagene osseo degli inumati dell’Arma dell’Aquila. In: Biagi P, Starnini E (eds) Gli Scavi nell’Arma dell’Aquila (Finale Ligure, Savona): Le Ricerche e i Materiali degli Scavi del Novecento. Quaderno 15. Societàper la Preistoria e Protostoria della Regione Friuli-Venezia Giulia, Trieste, pp 183–8 [Google Scholar]
  • Sparacello VS, Varalli A, Rossi S, et al (2020) Dating the funerary use of caves in Liguria (northwestern Italy) from the Neolithic to historic times: results from a large-scale AMS campaign on human skeletal series. Quat Int 536:30-44. doi.org/10.1016/j.quaint.2019.11.034. [Google Scholar]
  • Parenti R, Messeri P (1962) I resti scheletrici umani del Neolitico Ligure. Palaeontogr Ital 50:5–165 [Google Scholar]
  • Marchi D, Sparacello VS, Shaw CN (2011) Mobility and lower limb robusticity of a pastoralist Neolithic population from North- Western Italy. In: Pinhasi R, Stock JY (eds) Human bioarchaeology of the Transition to Agriculture. John Wiley & Sons, New York, pp 317–46 [CrossRef] [Google Scholar]
  • Villotte S, Knüsel CJ (2013) Understanding entheseal changes: definition and life course changes. Int J Osteoarchaeol 23:135–46 [Google Scholar]
  • Villotte S, Assis S, Alves Cardoso F, et al (2016) In search of consensus: terminology for entheseal changes (EC). Int J Paleopath 13:49–55 [CrossRef] [PubMed] [Google Scholar]
  • Villotte S (2006) Connaissances médicales actuelles, cotation des enthésopathies: nouvelle méthode. Bull Mem Soc Anthropol Paris 18:65–85 [Google Scholar]
  • Villotte S (2009) Enthésopathies et activités des hommes préhistoriques. Recherche méthodologique et application aux fossiles européens du Paléolithique Supérieur et du Mésolithique. Archaeopress, Oxford, 236 p [Google Scholar]
  • Villotte S, Castex D, Couallier V, et al (2010) Enthesopathies as occupational stress markers: evidence from the upper limb. Am J Phys Anthropol 142:224–34 [PubMed] [Google Scholar]
  • Dutour O (1986) Enthesopathies (lesions of muscular insertions) as indicators of the activities of Neolithic Saharan populations. Am J Phys Anthropol 71:221–4 [CrossRef] [PubMed] [Google Scholar]
  • Dutour O (2000) Chasse et activités physiques dans la Préhistoire: les marqueurs osseux d’activités chez l’homme fossile. Anthropol Prehist 111:156–65 [Google Scholar]
  • Villotte S, Churchill SE, Dutour OJ, et al (2010) Subsistence activities and the sexual division of labor in the European Upper Paleolithic and Mesolithic: evidence from upper limb enthesopathies. J Hum Evol 59:35–43 [CrossRef] [PubMed] [Google Scholar]
  • Villotte S, Knüsel CJ (2014) “I sing of arms and of a man…”: medial epicondylosis and the sexual division of labour in prehistoric Europe. J Archaeol Sci 43:168–74 [Google Scholar]
  • Kennedy GE (1986) The relationship between auditory exostosis and cold water: a latitudinal analysis. Am J Phys Anthropol 71:401–15 [CrossRef] [PubMed] [Google Scholar]
  • Villotte S, Knüsel CJ (2016) External auditory exostoses and prehistoric aquatic resource procurement. J Archaeol Sci Rep 6:633–6 [Google Scholar]
  • Le Bras-Goude G, Binder D, Formicola V, et al (2006) Stratégies de subsistance et analyse culturelle de populations néolithiques de Ligurie : approche par l’étude isotopique (δ13C et δ15N) des restes osseux. Bull Mem Soc Anthropol Paris 18:45–55 [Google Scholar]
  • Goude G, Binder D, Del Lucchese A (2014) Alimentation et modes de vie néolithiques en Ligurie. In: Bernabo Brea M, Maggi R, Manfredini A (eds) Il Pieno Neolitico in Italia (8 10 juin Finale Ligure 2009). Riv Studi Liguri 77:371–87 [Google Scholar]
  • Rowley-Conwy P (1997) The animal bones from Arene Candide (Holocene sequence): final report. In: Maggi R (ed) Arene Candide: a functional and environmental assessment of the Holocene sequence (excavations Bernabò Brea-Cardini 1940–1950). Isitituto Italiano di paleontologia umana, Il calamo, Roma, ns 5, pp 153–77 [Google Scholar]
  • Molnar S (1972) Tooth wear and culture: a survey of tooth functions among some prehistoric population. Curr Anthropol 13:511–26 [Google Scholar]
  • Brooks S, Suchey JM (1990) Skeletal age determination based on the os pubis: a comparison of the Acsádi-Nemeskéri and Suchey- Brooks methods. Hum Evol 5:227–38 [Google Scholar]
  • Buckberry JL, Chamberlain AT (2002) Age estimation from the auricular surface of the ilium: a revised method. Am J Phys Anthropol 119:231–9 [CrossRef] [PubMed] [Google Scholar]
  • Schmitt A (2005) Une nouvelle méthode pour estimer l’âge au décès des adultes à partir de la surface sacro-pelvienne iliaque. Bull Mem Soc Anthropol Paris 17:1–15 [Google Scholar]
  • Ubelaker DH (1989) Human skeletal remains: excavation, analysis, interpretation. Taraxacum, Washington, 172 p [Google Scholar]
  • Smith BH (1991) Standards of human tooth formation and dental age assessment. In: Kelley MA, Larsen CS (eds) Advances in dental anthropology. Wiley-Liss, New York, pp 143–68 [Google Scholar]
  • AlQahtani SJ, Hector MP, Liversidge HM (2010) The London atlas of human tooth and eruption. Am J Phys Anthropol 142:481–90 [CrossRef] [PubMed] [Google Scholar]
  • Schaefer M, Black S, Scheuer L (2009) Juvenile osteology — a laboratory and field manual, Academic Press, New York, 384 p [Google Scholar]
  • Ríos L, Cardoso HF (2009) Age estimation from stages of union of the vertebral epiphyses of the ribs. Am J Phys Anthropol 140:265–74 [CrossRef] [PubMed] [Google Scholar]
  • Cardoso HF, Ríos L (2011) Age estimation from stages of epiphyseal union in the presacral vertebrae. Am J Phys Anthropol 144:238–47 [CrossRef] [PubMed] [Google Scholar]
  • Boccone S, Micheletti Cremasco M, Bortoluzzi S, et al (2010) Age estimation in subadults Egyptioan remains. J Comp Hum Biol 61:337–58 [CrossRef] [Google Scholar]
  • Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains, Arkansas Archaeological Survey Research Series no 44, Fayetteville, 218 p [Google Scholar]
  • Loth SR, Henneberg M (1996) Mandibular ramus flexure: a new morphologic indicator of sexual dimorphism in the human skeleton. Am J Phys Anthropol 99:473–85 [CrossRef] [PubMed] [Google Scholar]
  • Bruzek J (2002) A method for visual determination of sex using the human hip bone. Am J Phys Anthropol 117:157–68 [CrossRef] [PubMed] [Google Scholar]
  • Thieme FP, Schull WJ (1957) Sex determination of the skeleton. Hum Biol 29:242–73 [PubMed] [Google Scholar]
  • Richman EA, Michel ME, Schulter-Ellis FP, et al (1979) Determination of sex by discriminant function analysis of postcranial skeletal measurements. J Forensic Sci 24:159–67 [Google Scholar]
  • Steyn M, Işcan MY (1997) Sex determination from the femur and tibia in South African Whites. Forensic Sci Int 90:111–9 [Google Scholar]
  • Murail P, Bruzek J, Braga J (1999) A new approach to sexual diagnosis in past populations, practical adjustments from Van Vark’s procedure. Int J Osteoarchaeol 9:39–53 [Google Scholar]
  • Shaw C, Stock J (2009a) Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology of athletes. Am J Phys Anthropol 140:149–59 [Google Scholar]
  • Shaw C, Stock J (2009b) Habitual throwing and swimming correspond with upper limb diaphyseal strength and shape in modern human athletes. Am J Phys Anthropol 140:160–72 [Google Scholar]
  • Macintosh AA, Stock JT (2019) Intensive terrestrial or marine locomotor strategies are associated with inter- and intra-limb bone functional adaptation in living female athletes. Am J Phys Anthropol doi:10.1002/ajpa.23773 [Google Scholar]
  • Sparacello VS, d’Ercole V, Coppa A (2015) A bioarchaeological approach to the reconstruction of changes in military organization among Iron Age Samnites (Vestini) from Abruzzo, central Italy. Am J Phys Anthropol 156:305–16 [CrossRef] [PubMed] [Google Scholar]
  • Ruff CB (2002) Long bone articular and diaphyseal structure in Old World monkeys and apes. I: locomotor effects. Am J Phys Anthropol 119:305–42 [CrossRef] [PubMed] [Google Scholar]
  • Nagurka ML, Hayes WC (1980) An interactive graphics package for calculating cross-sectional properties of complex shapes. J Biomech 13:59–64 [CrossRef] [PubMed] [Google Scholar]
  • Sparacello VS, Pearson OM (2010) The importance of accounting for the area of the medullary cavity in cross-sectional geometry: a test based on the femoral midshaft. Am J Phys Anthropol 143:612–24 [CrossRef] [PubMed] [Google Scholar]
  • Stock JT, Shaw CN (2007) Which measures of skeletal robusticity are robust? A comparison of external methods of quantifying diaphyseal strength to cross-sectional geometric properties. Am J Phys Anthropol 134:412–23 [CrossRef] [PubMed] [Google Scholar]
  • Macintosh AA, Davies TG, Ryan TM, et al (2013) Periosteal versus true cross-sectional geometry: a comparison along humeral, femoral, and tibial diaphysis. Am J Phys Anthropol 150:442–52 [CrossRef] [PubMed] [Google Scholar]
  • Ruff CB (2018) Quantifying skeletal robusticity. In: Ruff CB (ed) Skeletal variation and adaptation in Europeans: Upper Paleolithic to the Twentieth Century. John Wiley and Sons, Inc., New York, pp 39–47 [Google Scholar]
  • Ruff CB (2000) Body size, body shape, and long bone strength in modern humans. J Hum Evol 38:269–90 [CrossRef] [PubMed] [Google Scholar]
  • Trinkaus E, Ruff CB (2012) Femoral and tibial diaphyseal crosssectional geometry in Pleistocene Homo. PaleoAnthropology 2012:13–62 [Google Scholar]
  • Sparacello VS, Villotte S, Shackelford LL, et al (2017) Patterns of humeral asymmetry among Late Pleistocene humans. CR Palevol 16:680–9 [CrossRef] [Google Scholar]
  • Trinkaus E, Churchill SE, Ruff CB (1994) Postcranial robusticity in Homo. II. Humeral bilateral asymmetry and bone plasticity. Am J Phys Anthropol 93:1–34 [CrossRef] [PubMed] [Google Scholar]
  • Rhodes JA, Knüsel CJ (2005) Activity-related skeletal change in medieval humeri: cross-sectional and architectural alterations. Am J Phys Anthropol 128:536–46 [CrossRef] [PubMed] [Google Scholar]
  • Holt BM (2003) Mobility in Upper Paleolithic and Mesolithic Europe: evidence from the lower limb. Am J Phys Anthropol 122:200–15 [CrossRef] [PubMed] [Google Scholar]
  • Martiarena ML (2016) Analyse d’un marquer d’activité dans une population humaine préhistorique. M2 Thesis, Université Libre de Bruxelles, Bruxelles [Google Scholar]
  • Polet C, Martiarena ML, Villotte S, et al (2019) Throwing activities among Neolithic populations from the Meuse River Basin (Belgium, 4500–2500 BC) with a focus on adolescents. Child Past 12:81–95 [CrossRef] [Google Scholar]
  • Crowe F, Sperduti A, O’Connell TC, et al (2010) Water-related occupations and diet in two Roman coastal communities (Italy, first to third century AD): correlation between stable carbon and nitrogen isotope values and auricular exostosis prevalence. Am J Phys Anthropol 142:355–66 [CrossRef] [PubMed] [Google Scholar]
  • Standen VG, Arriaza BT, Santoro CM (1997) External auditory exostosis in prehistoric Chilean populations: a test of the cold water hypothesis. Am J Phys Anthropol 103:119–29 [CrossRef] [PubMed] [Google Scholar]
  • Velasco-Vazquez J, Betancor-Rodriguez A, Arnay-De-La Rosa M, et al (2000) Auricular exostoses in the prehistoric population of Gran Canaria. Am J Phys Anthropol 112:49–55 [CrossRef] [PubMed] [Google Scholar]
  • Villotte S, Stefanović S, Knüsel CJ (2014) External auditory exostoses and aquatic activities during the Mesolithic and the Neolithic in Europe: results from a large prehistoric sample. Anthropologie LII/1:73–89 [Google Scholar]
  • Cooper A, Tong R, Neil R, et al (2010) External auditory canal exostoses in white water kayakers. Br J Sports Med 44:144–7 [CrossRef] [PubMed] [Google Scholar]
  • Hurst W, Bailey M, Hurst B (2004) Prevalence of external auditory canal exostoses in Australian surfboard riders. J Laryngol Otol 118:348–51 [CrossRef] [PubMed] [Google Scholar]
  • Sparacello VS (2013) The bioarchaeology of changes in social stratification, warfare, and habitual activities among Iron Age Samnites of Central Italy. PhD Thesis, University of New Mexico, Albuquerque [Google Scholar]
  • Villotte S, Samsel M, Sparacello VS (2017) The paleobiology of the two adult skeletons from Baousso da Torre (Bausu da Ture) (Liguria, Italy): implications for our understanding of Gravettian lifestyle. Comptes Rendus Palevol 16:462–73 [CrossRef] [Google Scholar]
  • Meyer C, Nicklisch N, Held P, et al (2011) Tracing patterns of activity in the human skeleton: an overview of methods, problems, and limits of interpretation. J Comp Hum Biol 62:202–17 [CrossRef] [Google Scholar]
  • Jurmain R, Alves Cardoso F, Henderson C, et al (2012) Bioarchaeology’s Holy Grail: the reconstruction of activity. In: Grauer AL (ed) A companion to paleopathology. Wiley- Blackell, New York, pp 531–52 [CrossRef] [Google Scholar]
  • Lazenby RA (1990) Continuing periosteal apposition II: the significance of peak bone mass, strain equilibrium, and age-related activity differentials for mechanical compensation in human tubular bones. Am J Phys Anthropol 82:473–84 [CrossRef] [PubMed] [Google Scholar]
  • Martin RB, Atkinson PJ (1977) Age and sex-related changes in the structure and strength of the human femoral shaft. J Biomech 10:223–31 [CrossRef] [PubMed] [Google Scholar]
  • Ruff C, Hayes W (1988) Sex differences in age-related remodeling of the femur and tibia. J Orthop Res 6:886–96 [CrossRef] [PubMed] [Google Scholar]
  • Agostini G, Holt BM, Relethford JH (2018) Bone functional adaptation does not erase neutral evolutionary information. Am J Phys Anthropol doi:166.10.1002/ajpa.23460 [Google Scholar]
  • Alves Cardoso FA, Henderson CY (2010) Enthesopathy formation in the humerus: data from known age-at-death and known occupation skeletal collections. Am J Phys Anthropol 141:550–60 [PubMed] [Google Scholar]
  • Weiss E (2007) Muscle markers revisited: activity pattern reconstruction with controls in a Central California Amerind population. Am J Phys Anthropol 133:931–40 [CrossRef] [PubMed] [Google Scholar]
  • Nikita E, Xanthopoulou P, Bertsatos A, et al (2019) A threedimensional digital microscopic investigation of entheseal changes as skeletal activity markers. Am J Phys Anthropol doi:10.1002/ajpa.23850 [Google Scholar]
  • Lieverse AR, Stock JT, Katzemberg MA, et al (2011) The bioarcheology of habitual activity and dietary change in the Siberian Middle Holocene. In: Pinhasi R, Stock J (eds) Human bioarchaeology of the Transition to Agriculture. Wiley-Liss, New York, pp 265–91 [Google Scholar]
  • Niinimäki S (2012) The relationship between musculoskeletal stress markers and biomechanical properties of the humeral diaphysis. Am J Phys Anthropol 147:618–28 [CrossRef] [PubMed] [Google Scholar]
  • Michopoulou E, Nikita E, Henderson CY (2017) A test of the effectiveness of the Coimbra method in capturing activityinduced entheseal changes. Int J Osteoarchaeol 27:409–17 [Google Scholar]
  • Michopoulou E, Nikita E, Valakos ED (2015) Evaluating the efficiency of different recording protocols for entheseal changes in regards to expressing activity patterns using archival data and cross-sectional geometric properties. Am J Phys Anthropol 158:557–68 [CrossRef] [PubMed] [Google Scholar]
  • Ibáñez-Gimeno P, Galtés I, Jordana X, et al (2013) Entheseal changes and functional implications of the humeral medial epicondyle. Int J Osteoarchaeol 23:211–20 [Google Scholar]
  • Desse-Berset N, Desse J (1999) Les poissons. In: Tinè S (ed) Il Neolitico della caverna delle Arene Candide (scavi 1972–1977). Istituto Internazionale di Studi Liguri, Bordighera, pp 36–50 [Google Scholar]
  • Di Bartolomeo J, Paparella M, Meyerhoff W (1991) Cysts and tumors of the external ear. In: Shumrick D, Gluckman J, Meyerhoff W (eds) Otolaryngology, 3rd edn, Saunders, Philadelphia, pp 1243–58 [Google Scholar]
  • Fowler EP, Osmun PM (1942) New bone growth due to cold water in the ears. Arch Otolaryngol Head Neck Surg 36:455–66 [Google Scholar]
  • Kusaka S, Hyodo F, Yumoto T, et al (2010) Carbon and nitrogen stable isotope analysis on the diet of Jomon populations from two coastal regions of Japan. J Archaeol Sci 37:1968–77 [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.